Monthly report updates from our Reefscapers coral biologists at Kuda Huraa and Landaa Guraavaru.

You may also be interested in our Coral Bleaching (2016) report, and the Coral Frame Collection to view the latest photographs of your own sponsored coral frame as part of our Reefscapers coral propagation project.

January 2017

31 new coral frames and 65 recycled frames were transplanted at Landaa Giraavaru during January. 36 of the frames were located in our new ‘Water-Villa-300’ site, and 60 frames at the ‘Parrot Reef’ site (which now totals 458 frames). We only used Pocillopora species as healthy Acropora species are still rare and live mostly beyond 12m deep.

At Kuda Huraa, 9 sponsored frames and 13 recycled frames were placed in the Channel site during January.

Coral Growth Study
To closely study coral growth, we have placed new coral micro-fragments on Perspex sheets in an aquarium, where conditions are optimal and observations can be made regularly. So far, the coral fragments are showing good health overall. Holes were drilled in the Perspex sheets and fragments were sized accordingly (so we do not use glue or fixative substances that could impact the experiment). Several species have been used on the two sheets including encrusting, massive and digitate corals.

Coral mounted on Perspex sheets in our aquarium

Closeup of the mounted coral micro-fragments

Various species of Acropora growing on our coral frames

February 2017

At Landaa Giraavaru, 31 new frames were transplanted during February, at our new ‘Water Villa 300’ site. Fragments of Pocillopora species continue to be the only type of coral that we use, as healthy Acropora species are still rare and live mostly beyond 12 metres deep.

At Kuda Huraa, 19 new coral frames were made and a further 31 frames were recycled and deployed in our Channel area. Frames continue to show good health and have not been affected by predation. Frames that were transplanted with Acropora coral fragments have been doing very well; the colonies are growing nicely and now cover the cable tie that was used to attach them to the frame. Pocillopora coral fragments are healthy but are not growing as quickly. Efforts will be made to collect more Acropora colonies from the reef off Girifushi (Military Island) as they are showing to be more successful on our frames.

Pocillopora verrucosa

Acropora humilis

Recycled coral frames at Kuda Huraa’s ‘Channel’ site

Coral growth study

The coral micro-fragments have been showing good progress, and the skeleton of some fragments have started covering the Perspex sheet. We have been using a program called Pix4D to render 3D images, to closely observe and study the patterns of growth.

Our Coral Taxonomy Project is still ongoing during 2017.

March 2017

38 new frames were transplanted at Landaa Giraavaru during March, using fragments of Pocillopora corals as large Acropora species have not been found at shallow depths. Juvenile Acropora colonies are starting to appear near our new ‘Blu Reef’ site. These colonies are budding from deceased colonies built upon the old square frames. Monitoring has begun on five of the small colonies to track growth and to observe whether bleaching occurs during the warmer months.

Acropora baseline study

At Kuda Huraa, we transplanted 16 new coral frames during March, and re-transplanted (recycled) 36 frames at our ‘Channel’ site using Pocillopora fragments collected from the reef flat off Girifushi. All frames in the Channel have been placed in parallel lines, to exploit the sand substrate as efficiently as possible by placing many frames within a small area. Frame monitoring will be easier, and the site will become an interesting feature for snorkellers.

We have 26 frames at the House Reef site deployed since the 2016 bleaching event. Surviving Acropora colonies on deeper frames (10m) were fragmented and replaced on old frames (recycling) to expand our strategically placed ‘nursery’ with better resilience against a future bleaching event.

The overall health of the House Reef has been decreasing, with digitate coral species becoming scarce, making coral collection for our frames more difficult. Most remaining Pocillopora colonies are diseased and partly covered in algae, making our Reefscapers work more important as colonies must be collected and propagated to reduce disease mortality. Species of ‘massive corals’ are showing scars from parrot fish feeding, and suffer from crown of thorns predation.

Coral growth study – 3 months

The corals on one Perspex sheet spent several hours out of water due to a pump malfunction, causing most of the micro-fragments to die. The Perspex sheet was bleached and photographed to show fragment growth at two months. The second Perspex sheet has done well and is still growing in our tank.

Drupella snails are a further pressure on corals, and feed in large numbers on the living tissues of diseased corals in particular. It is unknown whether the Drupella or the disease appears first – do the snails act as a disease vector or do the feeding scars later become infected? Or the Drupella may simply prefer to feed on the already-diseased corals.

We plan to study Drupella feeding preferences under controlled conditions by providing three coral feeding options: healthy, diseased, scarred. Our preliminary study compared healthy/diseased corals, with the snails seeming to prefer feeding on the diseased coral fragments. If this feeding preference is confirmed in our further trials, the threat of Drupella acting as a serious vector of disease would be minimal, and conservation efforts could be focused elsewhere.

Reefscapers experiments with coral micro-fragments
(click to enlarge)

Drupella snails feeding on diseased coral

coral frames in the Channel site (Kuda Huraa)

April 2017

As the El Nino events persist around the world, we are seeing the effects on our corals in the Maldives. Elevated temperatures (up to 30 degrees Celsius) recorded on nearby reefs have caused some colonies to lose colouration. As we enter the warmest period of the year (April into May), careful monitoring has begun at each of our coral frame sites. This year is not predicted to be as catastrophic as last year’s bleaching event, however, we have already witnessed stressed corals of all sizes, with some bleaching on our coral frames and the smaller wild reef colonies. Although temperatures are not as high as those seen in 2016, we have observed bleaching in some areas, with natural Pocillopora colonies losing some colouration. Pocillopora fragments on our frames and the few surviving wild Acropora colonies have also been getting paler.

At Landaa Giraavaru, a total of 33 new coral frames were placed into the water during April, located at our ‘Blu Reef’ and ‘Water Villa 300’ sites. Once again, Pocillopora species were generally used, as they are the most predominant of the branching corals on our reef. Some Acropora were placed on frames when broken fragments were found.

To mitigate the effects of the warming ocean temperatures, we have been working to relocate some coral frames exhibiting stress. To test the resilience of our corals, frames were moved to shaded areas, deeper areas or left in place. The primary goal is to restore the reefs without needing to relocate vulnerable frames each time the ocean temperatures start to rise. We hope to find some coral genotypes that are naturally more resilient to the warmer waters.

At Kuda Huraa, 12 new coral frames were transplanted during April. We have also been busy relocating a total of 108 existing frames from shallower waters at the Channel site to cooler waters on our House Reef (at depths of 10 to 13m). The area we chose has a sandy substrate and healthy colonies of Acropora and Pocillopora nearby. 40 frames will remain in our Channel to act as a scientific control group for the experiment. Stacks of 5 frames were deployed using a lift-bag that acts as a ‘parachute’ to ensure the frames land the correct way up. We then removed the lift-bag by freediving rather than scuba diving, as this was faster and more efficient.

Further afield, we observed healthy coral cover on some wild reefs in Rasdhoo Atoll. Acropora recruits were found on reef flats at depths of just 50cm, with mature Acropora colonies at 5m. As we might expect, exposed sites on the outskirts of the atolls present the best cover of healthy corals.

May 2017

May has brought some cloudy weather and seasonal monsoon rain, cooling the ocean temperatures and allowing any temporarily paled coral colonies to recover. During the month, we transplanted 10 new frames at Kuda Huraa and 14 at Landaa Giraavaru.

Currently, Landaa Giravaaru has 3,200 coral frames deployed in its waters; 2,500 of these will no longer be monitored as they are diseased or bleached following last year’s coral bleaching event. These frames still provide an important ecosystem for a myriad of marine life, so many with surviving colonies are being ‘recycled’ by removing dead corals and replacing them with new living fragments. To keep pressure off the natural reefs, all new fragments will be harvested exclusively from our frames, and we are photographing our work to discover which species work best as donors.

We have also observed many bouldering corals recruiting naturally to a cement block, attached to a buoy (photos below). So we have started to deploy some overgrown frames in this area of the lagoon, to add additional viable surface area for the recruits to attach.

Diseased Colony Experiment
We wanted to determine the best strategy for any diseased coral colonies, particularly as the warmer bleaching season approaches. We selected ten part-diseased colonies from our House Reef to photograph and tag for monitoring. These will be compared with ten part-diseased colonies that were fragmented and placed on recycled frames (at 8m depth). We will monitor progress and growth over the next few months, to see if fragmenting the partially diseased colonies turns out to be beneficial or detrimental.

Drone Mapping
We have started to map the island of Kuda Huraa and the surrounding lagoon by using drone imagery. Overlapping images taken with an aerial drone were merged and processed in PIX4D mapper to generate a high resolution geo-referenced image with specific GCPs (Ground Control Points). A GCP is a specific point (such as the end of the jetty) given accurate geographic coordinates (and altitude) using Google Earth.

Share this page:
Facebooktwittergoogle_pluspinterestlinkedinmail